

University of Zurich

Institute of Computational Linguistics

Our project (I)

- Trainslate ('train'+'translate')... or train's late ;-)
- System that automatically translates German train announcements of the Swiss Federal Railways into Swiss German Sign Language (Deutschschweizerische Gebärdensprache, DSGS)
- Project team: one hearing and two Deaf researchers

Evaluating a Swiss German Sign Language Avatar among the Deaf Community

Sarah Ebling ebling@cl.uzh.ch

October 20, 2013

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

3/25

Institute of Computational Linguistics

Our project (II)

- Sample input: 'The RegioExpress to Olten, scheduled to leave at 6:41, has been cancelled due to a technical problem with the locomotive.
- ► Output: avatar that signs the train announcements in real time on a mobile phone → JASigning (Elliott et al., 2001, 2008, 2010; Glauert and Elliott, 2011; Jennings et al., 2010; Kennaway et al., 2007)

Figure: JASigning avatar character Anna

Institute of Computational Linguistics

Overview

- Introduction

Comparison of our approach with Segouat (2010)

- Approach of Segouat (2010): most suitable for standardized data
- Our approach: no templates or pre-built avatar animations during the actual translation step
- ➤ Our research interest: sign language machine translation → goal: build a translation system that may later be extended to other domains with more lexical and syntactic variation
- Output of our system: good quality expected → not representative of overall performance of sign language machine translation

University of Zurich Zurich

Institute of Computational Linguistics

JASigning

- Input: signs notated in the Hamburg Notation System for Sign Languages (HamNoSys) (Prillwitz et al., 1989)
- HamNoSys XML representation: Signing Gesture Markup Language (SiGML) (Elliott et al., 2000)
- SiGML code may also contain information about non-manual features

<hamgestural_sign gloss="LAUTSPRECHER"> <sign_nonmanual> <mouthing_tier>
 <mouth_picture picture="laUtSprEC@r"/> </mouthing_tier> </sign nonmanual> <handconfig ceeopening="slack" handshape="ceeall'
mainbend="bent"/> <handconfig extfidir="u"/> <handconfig palmor="1"/>
<location_bodyarm contact="close" location="head'</pre> second location="ear" second_side="right_beside" side="right_beside"/> <rpt_motion repetition="fromstart"> <tat motion> <changeposture/>
<handconfig handshape="pinchall" mainbend="bent"/> </tgt_motion> </rpt motion> </sign manual> </hamgestural_sign>

Figure: SiGML code for the sign LAUTSPRECHER ('LOUDSPEAKER') in DSGS

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

7/25

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

5/25

Institute of Computational Linguistics

Overview

- Introduction
- Study setting
- Results
- 4 Conclusion

Institute of Computational Linguistics

Related work: Segouat (2010)

- System that converts French train announcements into French Sign Language (Langue des Signes Française, LSF) avatar animations and displays them on a monitor in a train station
- ► Parallel data consisting of written French announcements and LSF avatar animations, both as templates with slots
- Slots: e.g., names of train stations, types of trains, reasons for delays

Study setting

- Sign-language-only setting
- ► Moderator: Deaf project member
- 7 participants (native signers of the language they evaluated)
- ▶ 9 announcements projected onto a screen → use of fingerspelling, rhetorical questions, indexical signs, lists of signs, ...

1 22 F 2 39 M 3 42 M 4 49 F 5 51 F			
2 39 M 3 42 M 4 49 F 5 51 F	ID	Age	Sex
7 69 M	2 3 4 5 6	39 42 49 51 58	M M F F

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

11/25

University of Zurich

Institute of Computational Linguistics

Related work: Kipp et al. (2011b)

- ► Focus group (8 native signers of DGS)
- ► Online survey (N=317)
- ▶ 6 avatars signing content in different sign languages (ASL, BSL, Finnish SL, DGS, IS)

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

9/25

University of Zurich^{∪z}

Institute of Computational Linguistics

Overview

- Results

Institute of Computational Linguistics

Our study

- Aim: evaluate the quality of the avatar animations generated from our notations at an early stage (before developing machine translation system and mobile phone application)
- Focus group
- ► No comprehensive evaluation

Study results and improvements (III)

Speed of mouthings

Example: MÜNCHENBUCHSEE (place name)

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling 15/25

Institute of Computational Linguistics

Study results and improvements (I)

► Color of avatar's clothing and background

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

13/25

Institute of Computational Linguistics

Study results and improvements (IV)

Speed of fingerspelling

Example: ARTH-GOLDAU (place name)

Institute of Computational Linguistics

Study results and improvements (II)

► End position of signed announcements

Final posture →

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

Study results and improvements (VII)

Format of time specifications (II)

Example: 13:00 (1 p.m.)

October 20, 2013

Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

19/25

Institute of Computational Linguistics

Study results and improvements (V)

► Lists of place name signs

Example: ORT ('place') ARTH-GOLDAU BELLINZONA LUGANO (place names)

October 20, 2013

Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

17/25

Institute of Computational Linguistics

Study results: Remaining issues

► Default direction of eyegaze

 \rightarrow 7

► Some non-manuals precede the manual components of a sign Example: IX_oben_rechts ('IX_upper_right')

▶ Synchronization of manual and non-manual components of a sign

Institute of Computational Linguistics

Study results and improvements (VI)

► Format of time specifications (I)

UHR <STUNDEN> PUNKT <MINUTEN> ('CLOCK <HOUR NUMBER> DOT <MINUTE NUMBER>')
Example: UHR 13 PUNKT 00 ('CLOCK 13 DOT 00')

 \rightarrow

<STUNDEN> UHR <MINUTEN> ('<HOUR NUMBER> CLOCK <MINUTE NUMBER>')

Example: 13 UHR 00 ('13 CLOCK 00')

Outlook

- ► This paper: acceptance of DSGS avatar → next step: comprehensibility
 - \rightarrow Huenerfauth et al. (2007): "There appears to be a difference between a respondent's *perceived* understanding and her *actual* understanding of an animation." \rightarrow include comprehension task in the evaluation
 - \rightarrow Kipp et al. (2011a)
- ► Final stage of project: online survey to assess overall acceptance and comprehensibility of the DSGS avatar

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

23/25

University of Zurich^{UZH}

Institute of Computational Linguistics

Overview

- Introduction
- Study setting
- Results
- 4 Conclusion

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

21/25

Institute of Computational Linguistics

Thank you for your attention!

- ... and many thanks to:
 - ► Sandra Sidler-Miserez and Katja Tissi
 - ► Penny Boyes Braem
 - ▶ John Glauert
 - ▶ Thomas Hanke

University of Zurich^{UZH}

Institute of Computational Linguistics

Conclusion

- Evaluation of an avatar for Swiss German Sign Language (DSGS) among members of the Deaf community who use this language
- ► Evaluation data from a focus group with 7 Deaf signers
- Aspects improved:
 - Color of the avatar's clothing and the background
 - End position of signed announcements
 - Speed of mouthings and fingerspelling
 - Handling of lists of signs
 - Format of time specifications
- ► Remaining issues:
 - Default direction of eyegaze
 - ► Some non-manuals precede the manual components of a sign
 - ► Synchronization of manual and non-manual components

October 20, 2013 Evaluating a Swiss German Sign Language Avatar, Sarah Ebling

22/25

References

- R. Elliott, J. R. W. Glauert, J. R. Kennaway, and I. Marshall. The development of language processing support for the ViSiCAST project. In Proceedings of the Fourth International ACM Conference on Assistive Technologies, Assets '00, pages 101–108, Arlington, Virginia, United States. 2000. ACM.
- R. Elliott, J.R.W. Glauert, J.R. Kennaway, I. Marshall, and E. Safar. Linguistic modelling and language-processing technologies for avatar-based sign language presentation. *UAIS (Universal Access in the Information Society) Journal*, 6:375–391, 2008.
- Ralph Elliott, John Glauert, Richard Kennaway, and Kevin Parsons. ViSiCAST Deliverable D5-2: SiGML Definition. Technical report, ViSiCAST project. 2001.
- Ralph Elliott, Javier Bueno, Richard Kennaway, and John Glauert. Towards the Integration of Synthetic SL Animation with Avatars into Corpus Annotation Tools. In 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies, pages 84–87, 2010.
- John Glauert and Ralph Elliott. Extending the SiGML notation a Progress Report. In Second International Workshop on Sign Language Translation and Avatar Technology (SLTAT), Dundee, Scotland, 2011.
- Matt Huenerfauth, Liming Zhao, Erdan Gu, and Jan Allbeck. Evaluating american sign language generation through the participation of native asl signers. In *Proceedings of ASSETS'07*, 2007.
- V Jennings, R Elliott, R Kennaway, and J Glauert. Requirements for a signing avatar. In 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies, 2010.
- J. R. Kennaway, J. R. W. Glauert, and I. Zwitserlood. Providing signed content on the internet by synthesized animation. ACM Trans. Comput.-Hum. Interact., 14(3), September 2007.
- Michael Kipp, Alexis Heloir, and Quan Nguyen. Sign language avatars: Animation and comprehensibility. In *Proceedings of IVA 2011*, pages 113–126, 2011a.
- Michael Kipp, Quan Nguyen, Alexis Heloir, and Silke Matthes. Assessing the Deaf User Perspective on Sign Language Avatars. In Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS '11, pages 107–114, New York, NY, USA, 2011b. ACM.
- Siegmund Prillwitz, Regina Leven, Heiko Zienert, Thomas Hanke, and Jan Henning. HamNoSys: Version 2.0: Hamburg Notation System for Sign Languages. An introductory guide. Signum, Hamburg, 1989.
- ซึ่งย์ชายิต ชิตชองคร Modellisatianga ซพลละเรียงใสนัดารสูกในสมรูปเลยีสรรริสภาพย์เลกอุบน la diffusion. PhD thesis, Université Paris ชิตชู52010.