Will there ever be a market for signing avatars?
Some observations on the past and future of our field

Thomas Hanke
University of Hamburg

State of the union instead of a research paper. More to initiate a discussion than anything else
Babel problem
So the avatar is the frontman of a whole bunch of technologies all of which are in their infancy.
The old question: Why avatars and not video?

- Economical reasons: cheaper to produce
- Ethical reasons: Anonymization possible
- Technical reasons: Glued videos look ugly
In the beginning, we sold our approach to funding bodies via the cost reduction promised: No question that there is a need for signed content, e.g. on the web, but keep costs lower than with video. We are not there yet.
Anonymization

- DictaSign worked with the idea to have Web 2.0 functionality for sign languages
- Wiki
As an anecdote
Anonymization(2)
As a side remark: All parties that did NOT have a signed version of their programme online, did not make it into the new Bundestag.
Technical reasons: Glued videos look ugly?

- Is it really that bad when gluing sentences?

Compare to speech technology. Slow progress, but there is progress. For sign language video, we did not really try - in video. People did try with mocap data.
Driving forces on the market are slow

- Web technologies recommendations like Web Accessibility Guidelines
- Legislation implementing UN Conventions and precursors like ADA
- So far, we did not succeed in making signed content hip for every website owner.
- Signed content does not pay off economically.
An Example: BITV 2.0

- German barrier-free information technology act from 2011
- Binding only for federal authorities
- Covers:
 - Information on what a website is about
 - Information on how to navigate on that website
 - Information on what parts of the website are available in sign or easy-to-read language

1 can be brief, or very brief. In any case, it does not make the contents of the site accessible.
2 is most boring for deaf people, taken over from needs of blind people without too much thinking.
3 can be brief if you want: Say none and you are set.
BITV Navigation

- Almost, but not exactly the same from site to site
- Obviously a field for some building blocks
- Consequently, there was a tender of the Federal Ministry of Finances to make the necessary signs available to all federal agencies.
- Does the market collapse?
<table>
<thead>
<tr>
<th></th>
<th>video</th>
<th>avatars</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mocap</td>
<td>animated</td>
<td>synthetic</td>
<td></td>
</tr>
<tr>
<td>fixed contents</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>parametrized contents</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>machine translation output</td>
<td>?</td>
<td>✔</td>
<td>(✔)</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

But there is not any machine translation output.
Natural Language Interfaces

- Should standard computer interfaces move away from WIMP towards NLI, sign language users would be disadvantaged once again unless NLI also means sign.
NLI Visions: Knowledge Navigator from 1987
Will NLI ever become a reality?

• At least the idea is not dead:
Remember New Economy?

Back then it seemed most urgent to enable avatars to sign
Generating Human Movement

- Imitating human movement
- Often with a focus on manual articulation
- Animating human movement exaggerating important elements
Imitating Human Movement

- optical mocap equipment
- camera & depth sensor combinations such as Kinect
- high temporal resolution
- spatial resolution not sufficient to decide on ±contact
- handshape and facial detail difficult

While not ok for corpus data collection in a linguistic sense, certainly ok for actors to perform certain utterances. Kinect skeleton data
Imitating Human Movement

- Frame-by-frame adjustment of a 3D model to match a video recording (“rotoscopy”)
- Interpolation between keyframes as a quality/effort trade-off
- Use multi-cam or 3D cam to disambiguate 2d views without relying on the animator’s intuition

Kinect skeleton data
Animating Human Movement

- Implement an artistic style

Kinect skeleton data
i.e. we need more research about intersign/intrasign movement differentiation

Chunking not only in the temporal domain

- synthetic signing: sign level
- plus some larger structures
- mocap & animated signing: flexible
- video: minimally “paragraphs”
- The lower we go, the less we keep of the original dynamics
Machine Translation

- No large corpora available as training data (as with most languages not having a written form and many other languages as well)
- Not a sequence of symbols: More than one articulator
- Classifier constructions: Not every primitive can be found in the lexicon
- World knowledge about physical shape properties of what you are talking about

2 articulators
Major implications on resources such as Wordnet.
Most approaches targeting speech go thru written as an intermediate step, using standard voice recognisers or generators.

sign-to-sign cheating: gloss-to-gloss

Example-based mt (EBMT) requires parallel corpora
Approaches to (Symbolic) Machine Translation

Vauquois diagram
Deep: syntax/semantic
Never fully implemented. Conway/Veale were ahead of their time: When the project was closed down in 1998, the first version of a FrameNet resource was published by Fillmore et al.
The ViSiCAST Text-to-SL System

English Text \rightarrow HamNoSys

CMU parser \rightarrow DRS

DRS \rightarrow HPSG semantics

transfer

HPSG generation

Interlingua

HPSG Semantics: Minimal Recursion Semantics
DRS: Discourse Representation Structures (Kamp/Reyle)
simply encoding the consequences of physical properties into the lexicon. Works for small domains, but leads to an explosion of types. Think about the implications for a Wordnet for sls.
Huenerfauth 2006

English Text
Linguistic analysis
Discourse Model
transfer
Discourse Model
Visualisation
Animation
generation

Discourse Model
ASL man passes between tent and frog
Machine translation

- Traditional symbolic translation and statistical approaches are still separated in our field (due to project size…)
- “hybrid approaches have become the standard in language processing” (Wahlster, July 2013)
What happened to MPEG-11 & Co.?

- In 2002, there were prototype “SNHC” players that could combine avatar performance and “real” video
- Why care?
 - There is no standard way of delivery for avatar content

Why care? Obviously you can build your own website with an integrated avatar, but: Think about the iPhone receiving an email with signed content.
Corpus linguistics too slow to fully support the field

- The idea of combining mocap data and synthetic signing has been around at least since ViSiCAST times
Language Resources supporting recognition & generation

- Beyond simple glosses: Qualified types (= type + controlled inflection vocabulary) w/ HamNoSys for each form

- Not only natural dialogue, but also competence examples that might be more appropriate for training

- No annotation standards now or in the foreseeable future: Why not define one that would support MT?
Statistical phonological rules

- Apply doubling to one-handed signs between two two-handed signs

Contrary to Filhol and colleagues, we remain in the paradigm of corpus linguistics.
Mission of the field

- Access to information
- Educational content in the preferred language
Mission of the field

• Access to information
• Educational content in the preferred language
• Communication across languages
• Development of sign language as a communications medium beyond face-to-face
• Integrate with future HCI
• Support sign language linguistics

"Writing"
Lizard
How will the market develop?

- Slowly…
- Increased interest from signed content providers in avatars now that the gold rush on video is coming to an end
- Improvements needed
- More attention to how our field is observed by decision makers

but once again compare to speech generation
And the users?

- Why is your avatar not like Pedro?
- Who in the hearing world is enthusiastic about automatic translation, speech synthesis or speech recognition as such?
- In games and educational content, this is part of the story, or an enabling technology, or... – and accepted
Cooperate!

- Think about open source, e.g. to allow PhD students to join the field
- Mix approaches
- Join efforts for a virtual larger-scale project
- No more weather forecasts!
- Develop new application areas

At least 4 projects used this domain that does not really need translation
Thank you very much for your attention!

• The work described here is partially supported by
 • German Academies of Science programme (DGS-Korpus)
 • European Commission, 7th framework IST (Dicta-Sign)
 • and predecessors ViSiCAST & eSIGN